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Abstract

In this paper, a method of crack detection in beam is provided by wavelet analysis of transient flexural
wave. Firstly, we introduce a rotational spring in the cracked-beam model, and calculate the transient
flexural wave propagation by the Reverberation Matrix Method. Secondly, at any point in this beam, the
arrival time of waves with different group velocities can be identified by means of analysis of wavelet
transform. From the signal of mid-frequency flexural wave extracted by wavelet transform, we can exactly
determine the existence and position of crack in the beam. Here, a similar experiment is also produced to
test the transient strain signal in beam, and the result after wavelet transform analysis is shown in accord
with the theoretical one. Therefore, a powerful method is proved by the theoretical and experimental
studies on the cracked beam, which can detect the crack accurately utilizing the wavelet analysis of the mid-
frequency flexural wave.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Defects are almost unavoidable in structures, and their existences will decrease the mass,
stiffness, strength and safety of structures. How to diagnose the existence and position of defect is
an important and promising problem. Currently, a lot of researchers devote their attention to
detect the damage in structure by means of the ultrasonic method [1] and vibration-based method
[2–5]. Because the ultrasonic wave decays very quickly during the propagating process in
structure, it can only detect the damage in its near field for the case that the vicinity of damage
must be known in advance. For the damage detection in a large-scale structure, the ultrasonic
method will be time-consuming and costly. The vibration-based method utilizes the vibration
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characteristic of structure to diagnose the damage, which can only give global information on the
structure. Rizos and Apragathos [3] produced the crack in beam as a local flexibility and
developed a crack detective method by the measured vibration modes to determine the crack
location and depth. Narkis [4] stimulated the crack in simply supported beam by an equivalent
spring and investigated the change of natural frequency to identify the crack location. However,
the signal of vibration is insensitive to damage, especially to small damage. Therefore, a new
detective method needs to be proposed, which not only is sensitive to small damage, but also can
detect the damage in large-scale structures. Consider the middle frequency wave which not only is
sensitive to the damage but also decays slowly unlike the ultrasonic wave utilizing the middle
frequency signal to diagnose the damage will be an effective method, and up to now only a little
attempt has been done [6].
Wavelet transform (WT) is the local transform of space and time. Time–frequency window of

WT has self-adaptability, which is suitable for detecting the abrupt information from signal.
Inoue et al. [7] firstly applied the Morlet wavelet transform to the analysis of flexural wave in
Euler beam. Onsay and Haddow [8] determined the location of the impact by analyzing the
flexural wave of Timosenko beam based on Gabor wavelet. They point out that the largest peak
of WT magnitude of dispersive wave happens at the arrival time of wave at the group velocity.
However, the above works are not related to the damage detection.
The aim of this paper is to give a global damage detective method based on wavelet analysis of

flexural wave in beams. Firstly, we introduce an approximate model of Timoshenko beam
including a vertical edge crack, where the crack is modelled by a rotational spring. According to
this model, transient flexural waves can be calculated by the Reverberation Matrix Method [9,10].
Furthermore, based on the wavelet analysis of the flexural wave in cracked beam and non-cracked
beam, we can identify the arrival time of waves with different group velocities, and determine the
location of crack in the beam. Lastly, a similar experiment is given to verify the reliability of this
method.

2. Cracked beam model

For convenience, we consider a Timoshenko rectangular beam with a single-edge vertical crack
as shown in Fig. 1. Here the cracked beam is treated as two uniform beams, and connected by a
rotational spring at the crack location. In order to avoid the non-linearity, the crack is assumed to
be open at any time, and only the effect around near field of crack is considered. We decompose

Fig. 1. The model of crack.
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the transverse displacement w into wb caused by bending and ws caused by shear force, so the
flexural wave equations of Timoshenko beam can be written as follows:

kGA
@2ws

@x2
¼ rA

@2ðwb þ wsÞ
@t2

;

EIz

@3wb

@x3
þ AG

@ws

@x
¼ rIz

@3wb

@t2@x
; ð1Þ

where E is Young’s modulus, G the shear modulus, r the material density, and k the shear force
factor. Iz and A indicate the moment of inertial and the area of cross-section, respectively. The
corresponding moment, shear force, displacement and rotational angle is given by

M ¼ EIz
@2wb

@x2
; V ¼ kGA

@ws

@x
; w ¼ wb þ ws; c ¼

@wb

@x
: ð2Þ

The group velocity of wave can be defined by

cg ¼ do=dk; ð3Þ

where o is the angular frequency and k is the wave number.
There are two kinds of waves with different group velocities in Timoshenko beam as shown in

Fig. 2. One kind of waves (slow wave) has a lower limit of group velocity and can propagate at all
frequencies. The other one (fast wave) has a higher limit of group velocity, but it can only
propagate beyond the cut-off frequency, which is expressed by

oc ¼ c1=Rz

ffiffiffi
Z

p
; ð4Þ

where Z ¼ E=kG; c1 ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
; Rz ¼

ffiffiffiffiffiffiffiffiffiffi
Iz=A

p
:

The connective conditions of two uniform beams at the crack are

wJK ¼ wJN ; MJK ¼ MJN ; VJK ¼ VJN ; cJK � cJN ¼ Cw00
bJK ; ð5Þ

where C is the flexibility of the rotational spring. Subscripts JK and JN indicate the point J on the
crack corresponding to different parts of beam K and N (shown in Fig. 1). The flexibility C for
one side crack is given as [3]

C ¼ 5:346h f ðxÞ; ð6Þ

Fig. 2. Group velocity in Timoshenko beam.
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where x ¼ a=h; h is the height of the cross-section of the beam, a is the depth of the crack,

f ðxÞ ¼ 1:8624x2 � 3:95x3 þ 16:375x4 � 37:226x5 þ 76:81x6

� 126:9x7 þ 172x8 � 143:97x9 þ 66:56x10

3. Transient flexural wave of cracked beam

Consider that a cracked beam can be separated into M elements by M þ 1 joints. All external
forces are assumed to be loaded at joints. The crack is also considered as a joint. For an element
JN, we introduce a local co-ordinate system at each joint, which is shown in Fig. 3.
By applying Laplace transform to Eqs. (1) and (2), where Laplace transform of ðwJN ;cJNÞ with

respect to t is denoted by ð #wJN ; #cJNÞ ¼
RþN

0 ðwJN ;cJNÞ e�pt dt; the corresponding displacement
vector #UJNðx; pÞ ¼ f #wJNðx; pÞ; #cJNðx; pÞgT in the local co-ordinate system JN is expressed as

#UJNðx; pÞ ¼ AJN
u #aJN þ DJN

u
#dJN ; ð7Þ

where #aJN ¼ f #aJN
1 ; #aJN

2 gJN and #dJN ¼ f #dJN
1 ; #dJN

2 gJN are amplitude of arriving and departing waves
in the local co-ordinate system JN, respectively. The phase matrix of the arriving and the
departing displacement wave AJN

u and DJN
u in the local co-ordinate system JN are denoted by

AJN
u ¼

ð1þ a1Þes1x ð1þ a2Þes2x

s1e
s1x s2e

s2x

" #
; DJN

u ¼
ð1þ a1Þe�s1x ð1þ a2Þe�s2x

�s1e
�s1x �s2e

�s2x

" #
; ð8Þ

where

s1;2 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ZÞ2 � 4ðZþ c21=ðRzpÞ

2
qr

=
ffiffiffi
2

p
c1; a1;2 ¼ R2

Zðp
2 � c21s

2
1;2Þ=ðkc22Þ; c2 ¼

ffiffiffiffiffiffiffiffiffi
G=r

p
:

Force vector #FJNðx; pÞ ¼ f #MJN
z ðx; pÞ; #VJN

z ðx; pÞgT in the local co-ordinate JN is expressed as

#FJNðx; pÞ ¼ AJN
f #aJN þ DJN

f
#dJN ; ð9Þ

where AJN
f and DJN

f are the phase matrix of the arriving and the departing force wave, which are

AJN
f ¼

EIzs
2
1e

s1x EIzs
2
2e

s2x

kAGa1s1es1x kAGa2s2es2x

" #
; DJN

f ¼
EIzs

2
1e

�s1x EIzs
2
2e

�s2x

�kAGa1s1e�s3x �kAGa2s2e�s2x

" #
: ð10Þ

Substituting Eqs. (7) and (9) into the boundary condition Eq. (5) at the crack, force equilibrium
and displacement compliance for other joints, and introducing the arriving wave amplitude vector

Fig. 3. The local co-ordinate system of joint.
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#aJ ¼ f#aJN ; #aJKgT and departing wave amplitude vector #dJ ¼ f #dJN ; #dJKgT of Joint J, the scattering
relation of the arriving and the departing wave of Joint J has the form

#dJ ¼ SJ #aJ � #sJ ; ð11Þ

where SJ is the local scatter matrix of Joint J. #sJ is the local source vector of Joint J, which can be
found in the Appendix.
Then the scatter relation of all joints is assembled into the global matrix as

#d ¼ S #a þ #s; ð12Þ

where #d; #a; #s and S are, respectively, the global amplitude vectors of arriving wave and departing
wave, source vector and scatter matrix. Since both vectors #d and #a are unknown quantities, there
must be an additional equation relating #d and #a: A departing wave from a joint of a beam is also
considered as an arriving wave at the other joint of the same beam. However, the amplitude for
waves at both joints of element JN can be differed by a phase shift factor as follows:

#aJN ¼ PJNðlJK ; pÞ #dNJ ; ð13Þ

where PJNðlJN ; pÞ is the local phase shift matrix in the local co-ordinate system JN, which is

PJNðlJN ; pÞ ¼
�e�s1l

JN

0

0 �e�s2l
JN

" #
: ð14Þ

Then Eq. (14) can be assembled into the global matrix as

#a ¼ P *d; ð15Þ

where P is the global phase shift matrix, which is given by

P ¼

P12ðl12; pÞ 0 ? 0 0

0 P21ðl21; pÞ ? 0 0

^ ^ & ^ ^

0 0 ? PMðMþ1ÞðlMðMþ1Þ; pÞ 0

0 0 ? 0 PðMþ1ÞMðlðMþ1ÞM ; pÞ

2
6666664

3
7777775
: ð16Þ

The global vectors *d and #d have the same elements, but are sequenced in different vectors. This
relation can be expressed through a permutation matrix H as

*d ¼ H #d; ð17Þ

where H is a 4M	 4M block-diagonal matrix composed of M, the same 4	 4 sub-matrix H1 and
other vanishing elements as follows:

H ¼

H1 0 ? 0

0 H1 ? 0

^ ^ & ^

0 0 ? H1

2
6664

3
7775; H1 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775: ð18Þ
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Substituting Eq. (17) into Eq. (15), the additional equation about #d and #a is derived as

#a ¼ PH #d: ð19Þ

Solving Eqs. (19) and (12), the result can be written as

#d ¼ ½I � R��1#s; ð20Þ

where R ¼ SPH is called the Reverberation Matrix.
If #d and #a are known, the displacement and the force in Laplace domain at any position yield

#U ¼ ðAuPH þ DuÞ½I � R��1#s;
#F ¼ ðAf PH þ Df Þ½I � R��1#s: ð21Þ

It can be solved by inverse Laplace transform of Eq. (21), but it is not easy to solve. Because
½I � R��1 has a lot of poles solved by residual theorem, it needs a lot of accurate poles, which
makes the computational work become very difficult. If the matrix I � R is a singular one,
½I � R��1 does not exist. By the expansion of rays, it can be the expanded series ½I � R��1 ¼P

N

K¼0 RK ; so the displacement vector is denoted as

Uðx; tÞ ¼
XN
K¼0

1

2pj

Z
½AuPH þ Du�RK #sept dp; ð22Þ

Here, each integral represents the waves which arrive at point x after being refracted K times in
the beam. The waves with respect to K ¼ 0 arrive directly at x point from source, so they are
called source waves. According to the observation time, the dynamic response can be computed
by truncating the series. The inverse Laplace transform of Eq. (22) can be computed by means of
the Fast Fouier Transform (FFT) according to Ref. [10].

4. Wavelet analysis

Let f ðtÞ be a signal in the time domain ð�N;NÞ; continuous wavelet transform of f ðtÞ can be
expressed as

Wf ða; bÞ ¼
1ffiffiffi
a

p Z
N

�N

f ðtÞ %f
t � b

a

� �
dt; ð23Þ

where j is mother wavelet and the bar indicates its complex conjugate. a and b are real-valued
parameters and can be used to characterize the dilation and translation features of wavelet.
In this paper, Morlet wavelet and its Fourier transform are adopted, which are

fðtÞ ¼ p�1=4ðe�io0t � e�o2
0
=2Þe�t2=2; #fðoÞ ¼ p�1=4ðe�ðo�o0Þ2=2 � e�ðo2

0
þo2Þ=2Þ; ð24Þ

where o0 is a real and positive constant. When o0X5; e�o2
0
=2 is approximately equal to zero. So

Eq. (24) are approximately expressed as

fðtÞ ¼ p�1=4e�io0te�t2=2; #fðoÞ ¼ p�1=4e�ðo�o0Þ2=2: ð25Þ

In this paper, we take o0 ¼ 5 for the following analysis.
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The wave in beams is denoted in the Fourier integral form

uðx; tÞ ¼
1

2p

Z
N

�N

AðoÞe�ikxþiot dt: ð26Þ

So WT of uðx; tÞ can be expressed as

Wuða; b;xÞ ¼

ffiffiffi
a

p
2p

p�1=4
Z

N

�N

AðoÞe�ikxþiobe�ðao�o0Þ2=2 do: ð27Þ

For the above equation, only the vicinity of o0=a can contribute to the integral of the equation. So
Eq. (27) can be expressed approximately as

Wuða; b;xÞj jE
p�1=4

2p
ffiffiffi
a

p Aðo0=aÞ
sinðY Þ

Y

����
����; ð28Þ

where Y ¼ ðk0
0x � bÞ=a; k0

0 ¼ dk=dojo¼o0=a: Eq. (28) indicates that the magnitude of WT takes its
maximum value at a ¼ o0=o and b ¼ ðdk=doÞx ¼ x=cg: That is to say, the location of peak
indicates the arrival time b ¼ x=cg of the wave with angular frequency o ¼ o0=a:

5. Numerical example

A cantilever beam with a length of 0.6m and a cross-section of 0.01m	 0.01mm2 is only taken
for example in this paper. The material parameters are chosen as modulus of elasticity E ¼
2:1	 1011 Pa; the Poisson ratio n ¼ 0:3 and shear force factor k ¼ p2=12 . The edge crack with the
depth of 0:005m is located in the middle of the beam. When the step load F0HðtÞ is acted on the
free end of the beam, strain signals at position A and B in beam can be computed, here A and B

points are separately set with the distances from the free end 0.45 and 0.15m. The transient strain
wave of the cracked beam and uncracked beam at A and B is shown in Figs. 4 and 5, respectively,
which is computed by the Reverberation Matrix Method. In Figs. 4 and 5, the strain signal and
time are normalized by F0=EA and L=6c1; respectively, where L is the length of the beam. Here,
there are 2048 data points recorded as strain signal in the 15 time units.
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Fig. 4. Strains of position A in uncracked beam and cracked beam.
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Fig. 5. Strains of position B in uncracked beam and cracked beam.
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Fig. 6. Magnitude of WT of waves (shown in Fig. 4) with the different normalized scale.
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The scale a is also normalized by sampling period T. According to the waves shown in Figs. 4
and 5, their wavelet transform with different normalized scale a is given in Figs. 6 and 7,
respectively. Every peak in the figures represents the arrival time of wave at the group velocity. In
Fig. 6, for uncracked beam at normalized scale a ¼ 2; the times of the first three peaks are
separately 4.5264, 7.5366, 8.0054 to time unit, which indicate the arrival of the fast wave directly
from the free end, the refracted fast wave from the fixed end, and the slow wave directly from the
free end, respectively. The group velocity of the fast wave is 0.9924 and the group velocity of the
slow wave is 0.5621. Compared with the uncracked beam, we can notice that WT of cracked beam
adds two additional peaks between the first and the second peak to uncracked beam, whose
corresponding times are 5.6860, 6.8457. The first additional peak represents the arrival of the
refracted slow wave caused by the source fast wave propagating through the crack. But it is too
weak as shown in the figure. The second additional peak is the arrival of the refracted fast wave
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Fig. 7. Magnitude of WT of waves (shown in Fig. 5) with the different normalized scale.
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that is caused by the source slow wave propagating through the crack. To point B, similar results
of WT analysis can be obtained as shown in Fig. 7.
Accompanied by the increase of scale a; i.e., the decrease of frequency, width of every peak

becomes more and more wide so that some waves are difficult to be identified according to the
peak. When the scale is near the normalized cut-off scale (here normalized cut-off scale ac ¼ 35),
the group velocity of the fast wave is very low or vanish so that it is not clear to find the peaks
representing the arrival of the fast wave and only the slow wave is left. In Figs. 6 and 7, we only
can find the peaks representing the slow wave for normalized scale a ¼ 40: Compared with the
sub-figures of Fig. 7 with normalized scale a ¼ 40 for uncracked-beam, the sub-figure of cracked-
beam has an additional peak. This peak represents the arrival of slow wave reflected by crack.
When the frequency continues to decrease, that is to say, the normalized scale continues to
increase; it is more and more difficult to find peaks indicating waves caused by the crack because
of the effect of diffraction.

6. Crack localization

Through the above analysis, the method of determining the existence and location of crack
based on the wavelet analysis of mid-frequency flexural wave is developed. This process can be
shown as follows.

Step 1: Select the appropriate normalized scale a. Here we select the normalized scale greater
than or equal to the normalized cut-off scale, which is expressed as

a ¼ o0=ðocTÞ; ð29Þ

where T is the sampling period.
Step 2: Determine the group velocity of mid-frequency slow wave. According to the first arrival

time of the wave at different positions A and B at the selected normalized scale, the group velocity
can be calculated by

cg ¼ ðlA � lBÞ=ðtA � tBÞ: ð30Þ

Step 3: Give the arrival time of all waves of the uncracked beam according to group velocity of
slow wave. Compared with WT of waves in uncracked beam, if the additional peak is found from
WT of measurement signal, it means that there exists the crack in the beam. So the position of the
crack can be determined according to the arrival time of the first two waves and additional wave.
There are two cases. Case 1, additional peak occurs after the first peak and before the second
peak, it means that the crack is between the clamped end and the observation point, so the
distance from the observation point is cg Dt=2; where Dt is the time interval between the first
peak and the additional peak. Case 2, additional peak occurs after the second peak, it means
that the crack is between the free end and the observation point, so the distance from the
observation point is cg Dt=2; where Dtis the time interval between the second peak and the
additional peak.
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7. Experimental investigation

The experimental investigation is performed by a cantilever beam with an edge crack subjected
to impact at free end. The Plexiglass cantilever beam of 4:09mm	 32:41 mm cross-section,
260 mm in total length, modulus of elasticity E ¼ 5:03	 109 Pa; the Poisson ratio n ¼ 0:361;
density r ¼ 1215 kg=m3 and shear force factor k ¼ 2

3
is only taken in this experiment. The pre-

crack with depth 12mm is located at 107.21mm from the free end. The bending strains are
measured by using strain gages at points C and D with the distance 60 and 180mm from the free
end. The sampling period T is equal to 0.25ms.
Fig. 8 shows strains measured at positions C and D. Fig. 9 shows the magnitude of WT of

strains at positions C and D at normalized scale a ¼ 200 (normalized cut-off scale ac ¼ 186). The
first peaks of C and D can be detected at 257.5 and 372.25ms, respectively. According to Eq. (27),
group velocity cg ¼ 1046 m=s is given, which agrees well with the theoretical group velocity
cg ¼ 1081 m=s: Furthermore, the arrival time of the reflected wave at position C from the clamped
end is about 639 ms. There is one peak at 639 ms in Fig. 9 for C, which represents reflected wave
from the fixed end. Between them, there occur additional peaks (337.5ms), which include the
influence of crack. According to the first peak (257.5ms) and the additional peak (337.5ms), the
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Fig. 8. Strains measured at positions C and D.
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Fig. 9. Magnitude of WT of waves measured at positions C and D.
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distance of the crack from position C can be determined at about 43.2mm (the actual distance is
47.2mm). According to the WT of position D, the distance of the crack from position C is
43.4mm. As for the high-frequency wave, it is too weak to distinguish from the noise by wavelet
transform. When the scale is too large, that is to say, the frequency is too low, the peaks indicating
the wave caused by the crack do not be seen similar with the analytical result because of the effect
of diffraction.
Compared with the real condition, it is illustrated that it is an effective method for determining

the location of the crack by utilizing mid-frequency flexural wave extracted by wavelet transform.

8. Conclusion

From the analytical and experimental analysis, it is concluded that the model of cracked beam
is suitable for the mid-frequency flexural wave. As for the high-frequency flexural wave, the
analytical analysis can give good results, but in fact, the signal is too weak to distinguish from the
noise. The low-frequency flexural wave also cannot be used to detect the location of the crack
because of the effect of diffraction. To utilize the mid-frequency slow wave extracted by wavelet
transform to detect the crack can give better results. This method can only determine the existence
and location of the crack, which is not suitable for diagnosing the depth of crack and style of
damage. So this method can be used as a supplement of the ultrasonic method, so that much time
and money will be saved. Furthermore, this method based on mid-frequency flexural wave
extracted by wavelet transform is also suitable for the existence and location of multi-crack in the
beam.
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Appendix

The scatter matrix and source vector of Joint J is expressed by, respectively,

SJ ¼ �ðDJÞ�1AJ ; #sJ ¼ �ðDJÞ�1 #gJ :

For the joint at the crack

DJ ¼

1þ a1 1þ a2 1þ a1 1þ a2
�a1s1 �a2s2 a1s1 a2s2

s21 s22 s21 s22

�s1 �s2 �s1 � Cs21 �s2 � Cs22

2
6664

3
7775; AJ ¼

1þ a1 1þ a2 1þ a1 1þ a2
a1s1 a2s2 �a1s1 �a2s2
s21 s22 s21 s22

�s1 �s2 s1 � Cs21 s2 � Cs22

2
6664

3
7775;

#gJ ¼ 0; 0; 0; 0ð ÞT:
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For the joint at the clamped end

DJ ¼
1þ a1 1þ a2

s1 s2

" #
; AJ ¼

1þ a1 1þ a2
�s1 �s2

" #
; #gJ ¼ ð0; 0ÞT:

For the joint at the free end

DJ ¼
s21 s22

�s1 �s2

" #
; AJ ¼

s21 s22

s1 s2

" #
; #gJ ¼ ð #MJ ; #FJÞT:

For the joint at the simply supported end

DJ ¼
1þ a1 1þ a2

s21 s22

" #
; AJ ¼

1þ a1 1þ a2
s21 s22

" #
; #gJ ¼ ð0; #MJÞT:

For the general joints

DJ ¼

s21 s22 s21 s22

�a1s1 �a2s2 a1s1 a2s2
1þ a1 1þ a2 1þ a1 1þ a2
�s1 �s2 s1 s2

2
6664

3
7775 ; AJ ¼

s21 s22 s21 s22

a1s1 a2s2 �a1s1 �a2s2
1þ a1 1þ a2 1þ a1 1þ a2

s1 s2 �s1 �s2

2
6664

3
7775;

#g ¼ ð #MJ ; #FJ ; 0; 0ÞT;

where #MJand #FJare the external moment and vertical force of Joint J, respectively.
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